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Efficient algorithm for calculating two-photon absorption spectra
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We propose an efficient time-dependent algorithm for nonlinear response function that requires CPU time
proportional to the system size, and study the size effects in two-photon absorption spectra of Si nanocrystal-
lites by using this algorithm.S1063-651X99)51808-4

PACS numbgs): 02.70-c, 42.65-k, 78.40—q, 78.20.Bh

. INTRODUCTION Im x3L A~ w1;— wy,0,,01) for TPA is provided by the

second-order time-dependent perturbation thébby,
The two-photon absorptioffPA) spectrum is an impor-

tant optical property of solids. It brings information comple- Xg%)ba(—wl;—wz,wz,wl)

mentary to the one-photon absorption spectrum because their .

process and selection rules are different. Therefore, many _ 1 ag(o,0)ac(w,0)) @
physicists have studied the TPA spectrum of solids by using ve 66V we iy wy,

various band structure models such as the two-parabolic-

band model and the Kane band-structure m¢dligl]. How-  where the composite matrix elements are defined by
ever, if we try to apply the microscopic band structure model

[3.4] to very large systems, such as amorphous systems ang (=, \_ % (€ Fem) (& Fmy) +(60' Fem)(€a Fmy)
nanocrystallites, calculation of TPA spectra becomes compu- ' nEYT 4 Wy — W2 Wy~ ©1 '
tationally very demanding since the CPU time for diagonal- 3
ization grows in proportion to the cube of system size. , , )

Therefore, one must employ new numerical schemes such d$'€ subscripts andc in the summation run over all occu-

the Green’s function method®] and the time-dependent pied stategvalence-band states in case of semicondugtors
methods6]. and all unoccupied statgsonduction-band statgsrespec-

In this Rapid Communication, we describe an efficienttively. The _subscripm for th(=T intermediate states runs over
algorithm for calculating TPA spectra by combining yer- ~ POth occupied and unoccupied states. .
ticle source methofi7,8] for the product of Green’s function, The degenerate TPA coefficieri(w, ) is defined by
and theprojection method9,10] for summation over all oc- Substitutingw;=w,=w ande,=&,=¢ in Eq. (1)-Eq. (3).
cupied states of Fermi degenerate electron system. We udderefore, the main quantity we should calculate becomes
semiempirical local pseudopotentidls2], the finite differ- 5

ence method in real spa¢&3] for constructing the Hamil- Y&(w)= Xvm e _1

tonian matrix, and thdeap frog method14] for the time 3e0V | Smm @mvT @ 0TIy 20

evolution of the state vectors. This efficient algorithm makes

it possible to calculate the size effect on the TPA spectra of XX Xm'y )

very large nanocrystallites without using effective-mass ap- em wm,v_w'

proximation. In the following we describe the algorithm and

its application to hydrogenated Si nanocrystallites. As seen in the above equations, nonlinear response func-

tions, such ag®, can be written as a product of Green'’s

Il. FORMULATION functions and perturbation operators summed over contribu-

tions from each occupied state of the Fermi degenerate elec-
The nondegenerate TPA coefficieml,n(w1,w;) de-  tron system. Therefore, they can be calculated by combining
scribes absorption of the probe light with frequengyand  the particle source metho@7,8] and theprojection method
polarizatione, in the presence of the excite light with fre- [9,10]. In the following, we describe the computational pro-
quency w, and polarizatione,. In the transparent region cedure for calculating thelegenerateTPA coefficient for
(w1,0,<Ey) it is related to the third-order nonlinear sus- simplicity. However, the extension to the nondegenerate
ceptibility Im x&), . by TPA coefficient is straightforward.
We define aandom vectoiby
6(27)%w,

N N
Cznaa(wl)nbb(wz) |(D>En§=:1 |n>§n:n§=:1 |En>§nv ©)

X1m Xé%)ba(—wl;—wz,wz,wl), (1)

ﬂab(wl!wZ):

where{|n)} are the basis set used in the computation and
where 7.(w1) and nyp(w,) are the real part of {¢,} are the pseudorandom numbers generated by the library
the linear refractive index. A simple form of routines that satisfy the statistical relation
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<<§:r§n>>:5n’n’ (6) 40
where ((-)) indicates the statistical average. The second %
equality in Eq.(5) is the expansion of the random vector by 30
the energy eigenstat¢kE )}, where{,, are their coefficients. _
Although we do not know the exact eigenstates or their co- % 25
efficients, it is easily proven that the coefficierts satisfy 2
the same statistical relation as that&f = 20
<)
<<§:/§n>>:5n’na (7) 8; 15
&
since the two sets of random variablgsand ,, are related 10
to each other by the unitary transformatic). Applying the
projection operatod(E;—H) to the random vector, we ob- 5
tain theprojected random vectdil 1] representing the Fermi
degenerate ground state, 0
|Pe,)=0(E;— H)|¢>:EZE [EW v, 8 FIG. 1. The nondegenerate TPA coefficigit(w,,w,) of Si
vt nanocrystallites as a function @f; with a fixed excite light fre-
w,=2.4eV.

whereE; is the Fermi energy. Then the statistical average oftY¢"Y:
(®g,|X|Pg,) gives the sum of contributions from each oc-

(2) 4\ — (i@ iHt _ _
cupied statd9]. Time evolution of a projected random vec- |5(I)Ef H=(=he "a(H Ef)x|5q)Ef’t_0>’ (15

tor
_ whered(H—E;) is a projection operator to extract the Fermi
|<I>Ef;t):e*'H‘|<I)Ef) (9)  unoccupied states.
can be calculated by tHeap frog method14]. Il RESULTS
Then it is easy to show that E¢4) is reformulated as Figure 1 shows the nondegenerate TPA coefficient
o Byx(wq,w,) of hydrogenated cubic Si nanocrystallites of
3) ) — dteti“tsB(t , 10 5|_zel =}—4 nm as a function of probe light frequenay;,
Xw) <<foc ) (10 with a fixed excite light frequencyw,=2.4 eV. In the cal-
_ . culation, we used the Hamiltonian matrix discretized iNto
where 6B(t) is the response of the system defined by =L3 cubic meshes in real space 32—80), which consists
of the semiempirical local pseudopotentjal], the kinetic
SB(t) = 2 (6D¢ :t|X] 5‘1’(52) 1), (11)  energy operator in the finite difference fofd8]. The rgsults
3epV f f were averaged over 2—16 random vectors depending on the

2 . crystallite size. The energy resolution is sete 0.2 eV,
where|8Pg ;t) and|o®g;t) are the first- and the second- which may not be small enough to resolve the fine structures
order perturbed state vectors. The first-order perturbed state the spectra but small enough to study the size effects on
vector the magnitude of Imy(®. The size effects on the TPA coef-

t ficient is evident in the figure. The absorption increases as
L ,—iH(t—t' Ci(wtint’ " the crystallite size increases, and approaches to the bulk
|5®Ef’t>_(_l)J,ocdt e T xe TN D i) value \)//vhenl =4 nm. The tail extending%elow the TPA ab-
(12 sorption edge 0.8 eV in the spectrum is due to the Lorentzian
distribution with the finite widthy in the time-dependent
Xmy X (—e 1 Erorint callgiulatlon.
® gure 2 shows the degenerate TPA spe@fd w,w) of
(13) Si nanocrystallites of =1.5—4 nm,L=40-80. Other pa-
rameters are the same as in Fig. 1. The results were averaged
is calculated as the solution of the inhomogeneous timeever 8—64 random vectors depending on the crystallite size,
dependent Schdinger equation, so that the typical value of statistical error becomes less than
2%. As the size of nanocrystallite becomes larger, the degen-
erate TPA spectra approaches to that of bulk Si calculated by
the diagonalization methofB], which is evidence that our
algorithm works properly.

IV. DISCUSSION

-3 Im)

Wmy

.d . )
571 0Pe ) =H|6Dg ) +xe (T D t), (14)

with the initial condition|5<I)Ef;t: —o)=0. The imaginary
part of frequencyy is introduced to replace o in Eq. (10)
by a large negative numb@r=In &'y, whereé is the relative An advantage of this method is that we can calculate the
numerical accuracy we need. The second-order perturbetbndegenerate TPA coefficieBy,(w,w,) over the whole
state vector is defined as range ofw, for a fixedw, at one program run, as in the case
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FIG. 2. The degenerate TPA coefficie{w,w) of Si nano-
crystallites as a function ab.

of the linear-response functiod®], by using an impulse

probe light instead of a monochromatic one and calculating
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O(M?N) for the linear-response function a@(M3N) for
the third order susceptibility.

Recently, Kurokawat al.[16] have proposed another al-
gorithm for calculating the TPA coefficient by using pro-
jected random vectors. The main difference between their
algorithm and ours lies in the calculation of the double inte-
gral in the time domain that appears in the second-order
time-dependent perturbation theory. While we factorize this
double integral to a product of Green’s functions in energy
domain by Fourier transformation, they factorize it to the
product of two single integrals in time domain by inserting
an additional random vector. Let us compare the efficiency
of the two algorithms. The CPU time for our algorithm to
calculate the degenerate TPA spectrum of nanocrystallite
with meshN=64% and the typical statistical error less than
2% is equivalent to 2400 hours on a single processor of
Fujitsu VPP500 machine. The CPU time for their algorithm
to calculate the degenerate TPA spectrurhaifmonic oscil-
lator with meshN=16° and the statistical error less than 7%
was 19 hours, which scales to 15000 hoursNet 64° and
the typical statistical error less than 2%. The origin of the
slow convergence probably originates from the additional
random vector they introduced.

the Fourier transform of the induced polarization. This is

possible because the induced polarization in the nondegener-
ate TPA is alinear function of the probe light field. There- In summary, we have established an efficient time-
fore, the computational cost for the nondegenerate coeffijependent algorithm for the nonlinear response function

cient isO(MN), whereM = T/AtxEn,,/y is the number of  \yhose computational cost scales linearly to the system size,

time steps in time domain or the number @§ points in  and studied the size effects on the two-photon absorption
energy domain. The computational cost for the degeneratgpectra of Si nanocrystallites.

coefficient become®(M?2N) because only one data point of
Baa(w1=w,,w,) is obtained from the nondegenerate spec-
trum dataB,,(w1,w,) at a fixedw,. Note that the large-
scale calculation in this article became possible only after the We wish to thank M. Murayama and D.C. Hutchings for
invention of our linear scaling time-dependent methodstheir useful comments. The numerical results in this article
which are much more efficient than the conventioequa- were computed by using Fujitsu VPP computers at RIKEN,
tion of motion methods[6] whose computational effort is ISSP, and NIG.

V. SUMMARY
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