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Efficient algorithm for calculating two-photon absorption spectra

Toshiaki Iitaka and Toshikazu Ebisuzaki
The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

~Received 10 May 1999!

We propose an efficient time-dependent algorithm for nonlinear response function that requires CPU time
proportional to the system size, and study the size effects in two-photon absorption spectra of Si nanocrystal-
lites by using this algorithm.@S1063-651X~99!51808-4#

PACS number~s!: 02.70.2c, 42.65.2k, 78.40.2q, 78.20.Bh
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I. INTRODUCTION

The two-photon absorption~TPA! spectrum is an impor-
tant optical property of solids. It brings information compl
mentary to the one-photon absorption spectrum because
process and selection rules are different. Therefore, m
physicists have studied the TPA spectrum of solids by us
various band structure models such as the two-parab
band model and the Kane band-structure model@1,2#. How-
ever, if we try to apply the microscopic band structure mo
@3,4# to very large systems, such as amorphous systems
nanocrystallites, calculation of TPA spectra becomes com
tationally very demanding since the CPU time for diagon
ization grows in proportion to the cube of system siz
Therefore, one must employ new numerical schemes suc
the Green’s function methods@5# and the time-dependen
methods@6#.

In this Rapid Communication, we describe an efficie
algorithm for calculating TPA spectra by combining thepar-
ticle source method@7,8# for the product of Green’s function
and theprojection method@9,10# for summation over all oc-
cupied states of Fermi degenerate electron system. We
semiempirical local pseudopotentials@12#, the finite differ-
ence method in real space@13# for constructing the Hamil-
tonian matrix, and theleap frog method@14# for the time
evolution of the state vectors. This efficient algorithm mak
it possible to calculate the size effect on the TPA spectra
very large nanocrystallites without using effective-mass
proximation. In the following we describe the algorithm a
its application to hydrogenated Si nanocrystallites.

II. FORMULATION

The nondegenerate TPA coefficientbab(v1 ,v2) de-
scribes absorption of the probe light with frequencyv1 and
polarizationea in the presence of the excite light with fre
quency v2 and polarizationeb . In the transparent region
(v1 ,v2,Eg) it is related to the third-order nonlinear su
ceptibility Imxabba

(3) by

bab~v1 ,v2!5
6~2p!2v1

c2haa~v1!hbb~v2!

3Im xabba
(3) ~2v1 ;2v2 ,v2 ,v1!, ~1!

where haa(v1) and hbb(v2) are the real part of
the linear refractive index. A simple form o
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Im xabba
(3) (2v1 ;2v2 ,v2 ,v1) for TPA is provided by the

second-order time-dependent perturbation theory@15#,

xabba
(3) ~2v1 ;2v2 ,v2 ,v1!

5(
v,c

1

6e0V

acv* ~v1 ,v2!acv~v1 ,v2!

vcv2 ig2v12v2
, ~2!

where the composite matrix elements are defined by

acv~v1 ,v2!5(
m

F ~ea•r cm!~eb•rmv!

vmv2v2
1

~eb•r cm!~ea•rmv!

vmv2v1
G .
~3!

The subscriptsv andc in the summation run over all occu
pied states~valence-band states in case of semiconducto!
and all unoccupied states~conduction-band states!, respec-
tively. The subscriptm for the intermediate states runs ov
both occupied and unoccupied states.

The degenerate TPA coefficientb(v,v) is defined by
substitutingv15v25v and ea5eb5ex in Eq. ~1!–Eq. ~3!.
Therefore, the main quantity we should calculate becom

x (3)~v!5
2

3e0V (
v,c,m,m8

xvm

vmv2v
xmc

1

vcv2 ig22v

3xcm8

xm8v

vm8v2v
. ~4!

As seen in the above equations, nonlinear response f
tions, such asx (3), can be written as a product of Green
functions and perturbation operators summed over contr
tions from each occupied state of the Fermi degenerate e
tron system. Therefore, they can be calculated by combin
the particle source method@7,8# and theprojection method
@9,10#. In the following, we describe the computational pr
cedure for calculating thedegenerateTPA coefficient for
simplicity. However, the extension to the nondegener
TPA coefficient is straightforward.

We define arandom vectorby

uF&[ (
n51

N

un&jn5 (
n51

N

uEn&zn , ~5!

where $un&% are the basis set used in the computation a
$jn% are the pseudorandom numbers generated by the lib
routines that satisfy the statistical relation
R1178 © 1999 The American Physical Society
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^^jn8
* jn&&5dn8n , ~6!

where ^^•&& indicates the statistical average. The seco
equality in Eq.~5! is the expansion of the random vector b
the energy eigenstates$uEn&%, wherezn are their coefficients.
Although we do not know the exact eigenstates or their
efficients, it is easily proven that the coefficientszn satisfy
the same statistical relation as that ofj,

^^zn8
* zn&&5dn8n , ~7!

since the two sets of random variablesjn andzn are related
to each other by the unitary transformation~5!. Applying the
projection operatoru(Ef2H) to the random vector, we ob
tain theprojected random vector@11# representing the Ferm
degenerate ground state,

uFEf
&[u~Ef2H !uF&5 (

Ev<Ef

uEv&zv , ~8!

whereEf is the Fermi energy. Then the statistical average
^FEf

uXuFEf
& gives the sum of contributions from each o

cupied state@9#. Time evolution of a projected random ve
tor

uFEf
;t&5e2 iHt uFEf

& ~9!

can be calculated by theleap frog method@14#.
Then it is easy to show that Eq.~4! is reformulated as

x (3)~v!5K K E
2`

0

dte1 ivtdB~ t !L L , ~10!

wheredB(t) is the response of the system defined by

dB~ t !5
2

3e0V
^dFEf

;tuxudFEf

(2) ;t&, ~11!

whereudFEf
;t& and udFEf

(2) ;t& are the first- and the second

order perturbed state vectors. The first-order perturbed s
vector

udFEf
;t&5~2 i !E

2`

t

dt8e2 iH (t2t8)~xe2 i (v1 ig)t8!uFEf
;t8&

~12!

'(
m,v

um&
xmv

vmv2v
3~2e2 i (Ev1v1 ig)t!zv

~13!

is calculated as the solution of the inhomogeneous tim
dependent Schro¨dinger equation,

i
d

dt
udFEf

;t&5HudFEf
;t&1xe2 i (v1 ig)tuFEf

;t&, ~14!

with the initial conditionudFEf
;t52`&50. The imaginary

part of frequencyg is introduced to replace2` in Eq. ~10!
by a large negative numberT' ln d/g, whered is the relative
numerical accuracy we need. The second-order pertu
state vector is defined as
d

-

f

te

-

ed

udFEf

(2) ;t&5~2 i !e2 iHtu~H2Ef !xudFEf
;t50&, ~15!

whereu(H2Ef) is a projection operator to extract the Ferm
unoccupied states.

III. RESULTS

Figure 1 shows the nondegenerate TPA coeffici
bxx(v1 ,v2) of hydrogenated cubic Si nanocrystallites
size l 51 – 4 nm as a function of probe light frequency,v1,
with a fixed excite light frequency,v252.4 eV. In the cal-
culation, we used the Hamiltonian matrix discretized intoN
5L3 cubic meshes in real space (L532– 80), which consists
of the semiempirical local pseudopotential@12#, the kinetic
energy operator in the finite difference form@13#. The results
were averaged over 2 – 16 random vectors depending on
crystallite size. The energy resolution is set tog50.2 eV,
which may not be small enough to resolve the fine structu
in the spectra but small enough to study the size effects
the magnitude of Imx (3). The size effects on the TPA coe
ficient is evident in the figure. The absorption increases
the crystallite size increases, and approaches to the
value whenl 54 nm. The tail extending below the TPA ab
sorption edge 0.8 eV in the spectrum is due to the Lorentz
distribution with the finite widthg in the time-dependen
calculation.

Figure 2 shows the degenerate TPA spectrabxx(v,v) of
Si nanocrystallites ofl 51.5– 4 nm, L540– 80. Other pa-
rameters are the same as in Fig. 1. The results were aver
over 8 – 64 random vectors depending on the crystallite s
so that the typical value of statistical error becomes less t
2%. As the size of nanocrystallite becomes larger, the deg
erate TPA spectra approaches to that of bulk Si calculated
the diagonalization method@3#, which is evidence that ou
algorithm works properly.

IV. DISCUSSION

An advantage of this method is that we can calculate
nondegenerate TPA coefficientbab(v1 ,v2) over the whole
range ofv1 for a fixedv2 at one program run, as in the cas

FIG. 1. The nondegenerate TPA coefficientbxx(v1 ,v2) of Si
nanocrystallites as a function ofv1 with a fixed excite light fre-
quency,v252.4 eV.
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of the linear-response functions@9#, by using an impulse
probe light instead of a monochromatic one and calcula
the Fourier transform of the induced polarization. This
possible because the induced polarization in the nondege
ate TPA is alinear function of the probe light field. There
fore, the computational cost for the nondegenerate co
cient isO(MN), whereM}T/Dt}Emax/g is the number of
time steps in time domain or the number ofv1 points in
energy domain. The computational cost for the degene
coefficient becomesO(M2N) because only one data point o
baa(v15v2 ,v2) is obtained from the nondegenerate sp
trum databaa(v1 ,v2) at a fixedv2. Note that the large-
scale calculation in this article became possible only after
invention of our linear scaling time-dependent metho
which are much more efficient than the conventionalequa-
tion of motionmethods@6# whose computational effort is

FIG. 2. The degenerate TPA coefficientb(v,v) of Si nano-
crystallites as a function ofv.
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O(M2N) for the linear-response function andO(M3N) for
the third order susceptibility.

Recently, Kurokawaet al. @16# have proposed another a
gorithm for calculating the TPA coefficient by using pro
jected random vectors. The main difference between th
algorithm and ours lies in the calculation of the double in
gral in the time domain that appears in the second-or
time-dependent perturbation theory. While we factorize t
double integral to a product of Green’s functions in ener
domain by Fourier transformation, they factorize it to t
product of two single integrals in time domain by insertin
an additional random vector. Let us compare the efficien
of the two algorithms. The CPU time for our algorithm
calculate the degenerate TPA spectrum of nanocrysta
with meshN5643 and the typical statistical error less tha
2% is equivalent to 2400 hours on a single processor
Fujitsu VPP500 machine. The CPU time for their algorith
to calculate the degenerate TPA spectrum ofharmonic oscil-
lator with meshN5163 and the statistical error less than 7
was 19 hours, which scales to 15 000 hours forN5643 and
the typical statistical error less than 2%. The origin of t
slow convergence probably originates from the additio
random vector they introduced.

V. SUMMARY

In summary, we have established an efficient tim
dependent algorithm for the nonlinear response funct
whose computational cost scales linearly to the system s
and studied the size effects on the two-photon absorp
spectra of Si nanocrystallites.
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